Efficient ambiguous parsing of mathematical formulae by Coen C.S.

By Coen C.S.

Show description

Read Online or Download Efficient ambiguous parsing of mathematical formulae PDF

Best mathematics books

Mathematik für Physiker 2: Basiswissen für das Grundstudium der Experimentalphysik

Die für Studienanfanger geschriebene „Mathematik für Physiker'' wird in Zukunftvom Springer-Verlag betreut. Erhalten bleibt dabei die Verbindung einesakademischen Lehrbuches mit einer detaillierten Studienunterstützung. DieseKombination hat bereits vielen Studienanfangern geholfen, sich die Inhalte desLehrbuches selbständig zu erarbeiten.

Extra resources for Efficient ambiguous parsing of mathematical formulae

Example text

This motivates the following definition. 4. Definition Let T ∈ Com(H) be a normal operator and f be a bounded function on σ(T ). Then N f (λn )Pn x + f (0)PKer (T) x, ∀x ∈ H. f (T )x := n=1 Note that if dim(H) < +∞ and 0 ∈ σ(T ), then f may be not defined at 0. The above definition, however, still makes sense because in this case PKer (T) = 0, since Ker (T) = 0, and we assume that f (0)PKer (T) = 0. The operator f (T ) is well defined because 2 N f (λn )Pn x + f (0)PKer (T) x = n=1 N |f (λn )(x, en )|2 + |f (0)|2 PKer (T) x 2 ≤ n=1 2 sup |f (λ)| x 2 < ∞, ∀x ∈ H, λ∈σ(T ) (cf.

6), the previous theorem is valid for self-adjoint operators. 18). 2 is known as the Hilbert–Schmidt theorem. e. Pn := (·, en )en and let PKer (T) be the orthogonal projection onto Ker(T ). 2), where the series are strongly convergent. ). Suppose a function f is analytic in some neighbourhood ∆f of σ(T ) and Ω is an admissible set such that σ(T ) ⊂ Ω ⊂ Cl(Ω) ⊂ ∆f . 11) and the Cauchy theorem f (T )x = − − 1 2πi 1 2πi f (λ)R(T ; λ)dλ x = ∂Ω N (λn − λ)−1 Pn x − λ−1 PKer (T) x dλ = f (λ) ∂Ω n=1 N − n=1 1 f (λ)(λn − λ)−1 dλ Pn x + 2πi ∂Ω 1 f (λ)λ−1 dλ PKer (T) x = 2πi ∂Ω N f (λn )Pn x + f (0)PKer (T) x, ∀x ∈ H.

1) is a linear functional and |f (x)| ≤ Bx y ≤ B x y =( B y ) x , ∀x ∈ H1 . So, f is a bounded linear functional on H1 and f ≤ B y . 34) there exists a unique z = z(B, y) ∈ H1 such that (Bx, y) = f (x) = (x, z), ∀x ∈ H1 , and z = f ≤ B y . ). e. B ∗ is bounded and B∗ ≤ B . 1) is satisfied and that the constructed operator B ∗ is the unique operator satisfying this equality. 2. Definition the adjoint of B. 3. Theorem Let H1 , H2 and H3 be Hilbert spaces, B, B1 , B2 ∈ B(H1 , H2 ) and T ∈ B(H2 , H3 ).

Download PDF sample

Rated 4.13 of 5 – based on 50 votes

Related posts