Compressions, Dilations and Matrix Inequalities by J.-C. Bourin

By J.-C. Bourin

Show description

Read or Download Compressions, Dilations and Matrix Inequalities PDF

Similar mathematics books

Mathematik für Physiker 2: Basiswissen für das Grundstudium der Experimentalphysik

Die für Studienanfanger geschriebene „Mathematik für Physiker'' wird in Zukunftvom Springer-Verlag betreut. Erhalten bleibt dabei die Verbindung einesakademischen Lehrbuches mit einer detaillierten Studienunterstützung. DieseKombination hat bereits vielen Studienanfangern geholfen, sich die Inhalte desLehrbuches selbständig zu erarbeiten.

Additional info for Compressions, Dilations and Matrix Inequalities

Sample text

London Math. Soc. 35 (2003) 553-564. A. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985. [7] B. E. Pecaric, A matrix version of the Ky fan generalization of the Kantorovich inequality, Linear and Multilinear Algebra 36 (1994) 217-221. [8] W. F. Stinepring, Positive functions on C ∗ -algebras, Proc. Amer. Math. Soc. 6 (1955) 211-216. 43 Chapter 3 Commuting dilations and Total dilations Introduction The letter H denotes a separable Hilbert space. H can be real or complex, finite or infinite dimensional.

6 entails a reverse inequality, first proved by B. E. 8. (Mond-Pecaric) Let Z > 0 with extremal eigenvalues a and b. Then, for every subspace E, (ZE )−1 ≥ 4ab (Z −1 )E . 7. Proof. Let E be the projection onto E. 6, for every r > 0, there exists x > 0 such that (a + b)2 (Z + rI). 4ab Since t −→ −1/t is operator monotone we deduce EZE + xE ⊥ ≤ (EZE + xE ⊥ )−1 ≥ 4ab (Z + rI)−1 (a + b)2 so that 4ab {(Z + rI)−1 }E (a + b)2 and the result follows by letting r −→ 0. 9. All the previous inequalities are sharp.

474]. In terms of compressions, this means (ZE )−1 ≤ (Z −1 )E (4) 37 for every subspace E and every Z > 0. 6 entails a reverse inequality, first proved by B. E. 8. (Mond-Pecaric) Let Z > 0 with extremal eigenvalues a and b. Then, for every subspace E, (ZE )−1 ≥ 4ab (Z −1 )E . 7. Proof. Let E be the projection onto E. 6, for every r > 0, there exists x > 0 such that (a + b)2 (Z + rI). 4ab Since t −→ −1/t is operator monotone we deduce EZE + xE ⊥ ≤ (EZE + xE ⊥ )−1 ≥ 4ab (Z + rI)−1 (a + b)2 so that 4ab {(Z + rI)−1 }E (a + b)2 and the result follows by letting r −→ 0.

Download PDF sample

Rated 4.14 of 5 – based on 24 votes

Related posts