# A Canonical Form of Vector Control Systems by Korovin S. K., Il’in A. V., Fomichev V. V.

By Korovin S. K., Il’in A. V., Fomichev V. V.

Similar mathematics books

Mathematik für Physiker 2: Basiswissen für das Grundstudium der Experimentalphysik

Die für Studienanfanger geschriebene „Mathematik für Physiker'' wird in Zukunftvom Springer-Verlag betreut. Erhalten bleibt dabei die Verbindung einesakademischen Lehrbuches mit einer detaillierten Studienunterstützung. DieseKombination hat bereits vielen Studienanfangern geholfen, sich die Inhalte desLehrbuches selbständig zu erarbeiten.

Extra resources for A Canonical Form of Vector Control Systems

Example text

A tempered distribution u belongs to Hs(Rn) if its Fourier transform u is a measurable function such that \H2H- = fwi)\20- + \Z\2)'<% is finite. Pseudodifferential operators have simple mapping properties on L2-Sobolev spaces. The following theorem summarizes the basic properties of the KohnNirenberg class of pseudodifferential operators. 1. Suppose that A and B are Kohn-Nirenberg pseudodifferential operators. (a) [Symbol filtered algebra] If A e *™(Rn) and Be ^(W1), then AoB e tf£J+m'(Rn). (b) [Composition formula for principal symbols] Let o-m(A),o~mi(B) be the principal symbols of A and B then the principal symbol of the composite is given by the pointwise product:

If CM is everywhere non-degenerate, then M is strictly pseudoconvex. 39 Exercise 7. Let B\ denote the unit ball in C n and let U be a neighborhood of a point on the boundary. Suppose that :U C\B\ —> C" is an injective, holomorphic map, smooth up to U n B~[. If (j)(U n S2n~l) C 5 2 " - 1 then

The five-periodicity of, say, Ai follows from the calculation xi+1 = Yi- 4>h{Xi) = -Xi-! - 4>h{xt) Therefore, \-Xi) = -Xi+1 - X^ Taking into account (23), we have 4> (Xi) = Xi — Xi+i — xt_i 18 Now we can use these identities to transform A^: Ai+5 = A+4 = Bi+3 - H(-Xi+3) = Ei+2 - 4>h(-Xi+3) = = Ci+1 + 4>h(Xi+1) - h(-Xi+3) = Ai + ^(Xi) + cj>h(Xi+l) - cj>h{-Xi+3) = = Ai + (Xi — Xi-i — Xi+\) + (Xi+i - Xi — Xi+2) + (Xi+4 + Xi+2) = = Ai + Xj + 4 — Xi-i = Ai. We have shown that the five-periodicity of Ai (and therefore the one of Bi, Ci, Di, Ei, and Yi) follows form the five-periodicity of Xi.